Nature Communications volume 14, numero articolo: 3287 (2023) Citare questo articolo
1347 accessi
93 Altmetrico
Dettagli sulle metriche
Le lumache marine hanno attirato ricercatori di tutte le discipline, ma le prime fasi della vita hanno ricevuto un'attenzione limitata a causa delle difficoltà di accesso o di allevamento degli esemplari giovani. Qui documentiamo la cultura del Conus magus dalle uova fino alla metamorfosi per rivelare cambiamenti drammatici nel comportamento alimentare predatorio tra giovani post-metamorfici e esemplari adulti. Gli adulti di C. magus catturano i pesci utilizzando una serie di peptidi di veleno paralitico combinati con un dente radulare uncinato utilizzato per legare i pesci avvelenati. Al contrario, i primi esemplari giovani si nutrono esclusivamente di vermi policheti utilizzando un comportamento di foraggiamento unico "pungiglione e gambo" facilitato da denti radulari corti e senza spine e da un distinto repertorio di veleni che induce ipoattività nella preda. I nostri risultati dimostrano come i cambiamenti morfologici, comportamentali e molecolari coordinati facilitano il passaggio dalla caccia ai vermi alla caccia ai pesci in C. magus e mostrano le lumache giovanili come una fonte ricca e inesplorata di nuovi peptidi di veleno per studi ecologici, evolutivi e di bioscoperta.
Nel corso della storia della vita, le innovazioni evolutive hanno consentito ai lignaggi in evoluzione di acquisire nuove funzioni che aprono opportunità ecologiche e, in molti casi, promuovono la diversificazione1,2. Comprendere come si sono verificate queste transizioni può essere difficile, poiché i tratti osservati spesso derivano da una serie di cambiamenti evolutivi che alla fine culminano in un tratto complesso3,4. L'apparato velenifero delle lumache marine (Gastropoda: Conidae) è un esempio di innovazione evolutiva che si è evoluta attraverso modifiche morfologiche dell'intestino anteriore5, promuovendo l'estesa radiazione del gruppo a partire dall'Eocene, con oltre 1000 specie esistenti distribuite in tutto il mondo6. Questo gruppo di gasteropodi predatori si è evoluto all'interno di un ciclo di vita bifasico, con la maggior parte delle specie che si schiudono come larve che nuotano liberamente che diventano giovani carnivori bentonici dopo la metamorfosi7,8. L'alimentazione predatoria dopo la metamorfosi si basa sull'impiego di potenti neurotossine (conotossine) secrete in una lunga ghiandola tubolare del veleno e iniettate attraverso denti radulari cavi, altamente modificati9,10. Questa sofisticata strategia di alimentazione ha consentito a questi predatori che si muovono lentamente di nutrirsi inizialmente di vermi e, più recentemente, di facilitare il passaggio evolutivo alla caccia di molluschi e pesci11,12.
A causa delle loro recenti ed estese radiazioni e della pletora di peptidi del veleno che producono, le lumache coniche hanno attirato l'interesse di biologi evoluzionisti11, farmacologi13 e tossicologi14, ma questo ampio interesse contrasta con la scarsità di letteratura sulle prime fasi della vita. Le osservazioni dei giovani sul campo sono state ostacolate dalle loro dimensioni minuscole e dalla loro identificazione spesso limitata dall'elevata somiglianza morfologica tra specie affini15,16,17. D'altra parte, le sfide legate all'allevamento delle lumache a cono hanno limitato le indagini precedenti all'esplorazione degli stadi embrionali e larvali18,19,20,21. A causa di queste limitazioni, l’ecologia e la biochimica delle lumache giovanili sono state ampiamente trascurate. Ciò si estende a specie ampiamente studiate come il cono del mago (Conus magus Linnaeus, 1758), la fonte dell'analgesico Prialt® (ω-conotossina MVIIA) approvato dalla FDA22. Sulla base di campioni sezionati catturati in natura, è stato suggerito che C. magus subisse un cambiamento dietetico dalla caccia ai vermi alla caccia ai pesci durante l'ontogenesi23, ma mancano prove empiriche a causa delle difficoltà di accesso alle prime fasi di vita.
Qui abbiamo coltivato il Conus magus dalle capsule delle uova alle larve da cova e, attraverso la metamorfosi, ai giovani carnivori. Dopo la metamorfosi, è stato osservato che i giovani di C. magus predavano esclusivamente vermi policheti utilizzando denti radulari di tipo ancestrale e un repertorio di veleni unico, prima di passare alla caccia di pesci in età adulta. Attraverso una combinazione di approcci sperimentali, dimostriamo come la transizione dalla caccia ai vermi alla caccia ai pesci durante l'ontogenesi è segnata da una serie di cambiamenti coordinati che abbracciano tutti i livelli di organizzazione biologica. I nostri risultati mostrano come i campioni allevati in laboratorio possano fornire nuove intuizioni sull’ecologia degli stadi di vita segreti ed evidenziare il potenziale delle lumache giovanili come fonte non sfruttata di nuovi peptidi bioattivi del veleno che altrimenti sarebbero accessibili solo attraverso la cattura di esoni o il sequenziamento del genoma.
4 mm23. Additionally, the methods used for the identification of small specimens are not mentioned and the high morphological similarity between juvenile cone snails suggests the sampling could have included other species. The present study provides empirical evidence of strict vermivory in juvenile C. magus. The feeding behaviour of juveniles was initiated by extension of the proboscis which probed the surface of the worm in preparation for venom injection. After several minutes, a radular tooth held at the tip of the proboscis was stabbed into the worm and the proboscis rapidly withdrawn inside the rostrum, leaving the prey untethered. Envenomation induced hypoactivity in worm prey, characterised by the loss of normal swimming, hiding and escape behaviours. The snail then stalked its prey for several minutes before extending its rostrum and engulfing the worm whole (Supplementary Movie 2). Occasionally, worms were stung a second time. The same feeding sequence was observed in all juveniles from 10 dps, although histology and rapid shell growth between 6–10 dps suggest carnivory may have started earlier (Fig. 1d). This “sting-and-stalk” foraging behaviour was consistent with the juvenile radular tooth lacking apical barbs, blades and serrations (Fig. 4b; Supplementary Fig. 2a), as seen in wild-caught specimens23. The hooked accessory process and the basal ligament seen in the adult tooth were also absent. The juvenile radular tooth was short in absolute and relative length, measuring 69.7 ± 1.15 µm (n = 5) in length for a shell length (SL) of 1.71 ± 0.08 mm (n = 5) (4.1% of SL). It had a waist and a broad base with a wide opening, as typically seen in vermivorous species. Interestingly, similar teeth are also found in juvenile worm-27 and mollusc-hunters (Rogalski, A. et al., manuscript in preparation), indicating that this trait has been retained in early life stages across Conidae. Morphometric analyses confirmed similarity with radular teeth from vermivorous cone snails (Supplementary Fig. 3; Supplementary Data 1), and the presence of similar teeth in related conoidean lineages such as Mitromorphidae and Borsoniidae28,29 suggests this trait may be plesiomorphic within the group./p>4 kDa restricted to the adult VG (Fig. 5c; Supplementary Fig. 8a; Supplementary Data 4). Furthermore, the different MS patterns obtained from proximal and distal VG support the heterogenous distribution of conotoxins along the adult VG. While MALDI-MS is a useful technique for whole venom profiling, this approach suffers a number of limitations, including low dynamic range and ion suppression effects, preventing the detection of the full venom complexity58. To complement MALDI-MS, we additionally performed liquid chromatography-mass spectrometry (LC-MS) on the juvenile and adult C. magus VG extracts. Considering the complexity of cone snail venoms and the typical mass range of conotoxins, only monoisotopic masses between 1–10 kDa and covering ≥0.1% of relative intensity were considered to facilitate ecological interpretation (Supplementary Data 4). A total of 123 masses (104 unique) were detected in the adult VG, while 92 masses (86 unique) were found in the juvenile VG. Comparison of mass lists revealed only a single mass (1438.01 Da) was shared between both venom proteomes, supporting the differences observed by MALDI-MS. While the juvenile VG proteome was largely dominated by peptides falling into the 1–2 kDa mass range (n = 53, 57.6% of masses), the adult VG proteome contained a large proportion of 4–6 kDa peptides (n = 48, 39% of masses) compared to juveniles (n = 10, 10.9% of masses) (Fig. 4d; Supplementary Fig. 8b)./p> 10-fold the tissue volume of RNA later (Invitrogen) and stored at –80 °C until extraction. The maternal VG was dissected and divided into proximal- and distal-regions of equal sizes to investigate spatial distribution of conotoxins along the VG and RNA extracted from fresh tissue. Three segments corresponding to proximal, central and distal regions were kept in a solution of 30% acetonitrile (ACN)/1% FA for proteomics, and two small segments (proximal and distal) were placed in 2.5% glutaraldehyde and processed for histology as described above. Total RNA was extracted from all samples using TRIzol (Invitrogen) following the manufacturer’s instructions to yield 0.4–2.72 μg of purified mRNA from each sample. The RNA quality and concentration were assessed on a 2100 Bioanalyzer using the RNA 6000 Nano kit (Agilent). Complementary DNA library preparation and sequencing were performed by the Institute for Molecular Bioscience Sequencing Facility (University of Queensland). Libraries were constructed using the Illumina Stranded mRNA Prep kit. Samples were pooled in a batch of 6 and 600-cycle (2 × 300 bp) paired-end sequencing was performed on an Illumina MiSeq instrument. Raw sequencing data have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA943605./p>250 amino acids and with a signal region hydrophobicity score <45% were manually removed. All sequences were searched for the presence of an N-terminal signal region using the SignalP 5.071 server and sequences lacking signal regions were discarded. At this stage, nucleotide sequences were manually inspected and incomplete or aberrant sequences (internal or no stop codons, repetitions, incorrect open reading frames) were discarded. The retained contigs were annotated using blastx and blastp72 searches against the non-redundant UniprotKB/SwissProt (E-value cut off: 10–3) and Conoserver databases. The ConoPrec tool in Conoserver was then used to identify the signal-, propeptide-, mature- and post-mature regions and cysteine frameworks. Expression levels of all reads were computed in transcripts per million (TPM)73 using Kallisto 0.46.174. Expression levels were summed up for each gene superfamily and relative expression (in per cent) calculated, including a specimen from the Philippines37. We then performed a principal component analysis (PCA) to evaluate the degree of venom composition similarities between juvenile and adult C. magus using XLSTAT statistical software (Addinsoft, free trial version). For the PCA biplot, the four variables with the strongest influence on the PCs are shown. The data matrix, summary statistics, contribution of each variable (in per cent), PCA scores and loading plots can be seen in Supplementary Data 3. All peptide precursors were named according to the conventional conotoxin nomenclature (with species represented by one or two letters, cysteine framework by an Arabic numeral and, following a decimal, order of discovery by a second numeral)75, with slight modification76. The superfamily was added as a prefix and precursors differing in their propeptide regions but with conserved mature peptides were differentiated with a small roman numeral as a suffix to distinguish between minor variants. All conotoxin precursor sequences have been deposited in NCBI GenBank [https://www.ncbi.nlm.nih.gov/nuccore] under accession numbers OQ644315–OQ644445./p> 150 counts/s. The most intense isotopes were selected and fragmented with collision-induced dissociation (CID) and electron-activated dissociation (EAD) tandem mass spectrometry. MS/MS scans were collected between 50–2000 m/z over 35 ms. The dynamic collision energy setting was used, allowing collision energy to vary based on m/z and z of the precursor ion. Data were acquired using OS 3.0.0.3339 and analysed in Peakview 2.2 (both SCIEX). The CID-MS/MS spectra were searched against a database combining all translated sequences from our RNA-seq experiments and previously reported C. magus conotoxins (Supplementary Data 2) using the Paragon78 algorithm implemented in ProteinPilot 5.0 (SCIEX) with the following settings: iodoethanol (for reduced and alkylated samples), trypsin digested (for digested samples), common conotoxin post-translational modifications79, biological modifications, thorough ID. Peptides with ≥2 tryptic fragments at a confidence of 99 and a false discovery rate <1% were considered genuine. The EAD-MS/MS data were searched against the same database using Mascot 2.5.180 (Matrix Science) with the following settings: trypsin, 1 missed cleavage, carbamidomethyl as a fixed modification, oxidation of methionine and deamidation of asparagine and glutamine as variable modifications, 20 ppm peptide tolerance, 0.1 Da MS/MS tolerance, 2 + 3+ and 4+ peptide charges, with an error tolerant search included. Peptides with ≥2 tryptic fragments, individual peptide scores >60 and a significance threshold <0.05 were selected./p>3.0.CO;2-2" data-track-action="article reference" href="https://doi.org/10.1002%2F%28SICI%291522-2683%2819991201%2920%3A18%3C3551%3A%3AAID-ELPS3551%3E3.0.CO%3B2-2" aria-label="Article reference 80" data-doi="10.1002/(SICI)1522-2683(19991201)20:183.0.CO;2-2"Article CAS PubMed Google Scholar /p>